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conclude that any frequency dependence is very small. Second, the

data show Ae negative so the dielectric constant of the adhesive was
less than that of the substrate. It was known in this case that the

adhesive had a dielectric constant of 3.2.5 at low frequencies.

IV. CONCLUSIONS

It has been shown that the wavelength in slot line is sensitive to

the dielectric constant and thickness of any adhesive present between

the substrate and the conducting surface. If the dielectric constant of

the adhesive is less than that of the substrate, wavelength increases

andthis increase isindirect proportion to the ratio T/D.
While adhesive effect would normally reconsidered undesirable,

it is possible by use of the simple expressions developed here to cor-
rect experimental data for comparison with theory without having

detailed knowledge of the properties of the adhesive (Fig. 4).
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The Limiting Value of the Interaction Between

Symmetrical Fringing Capacitances

HENRY J. RIBLET

Abstract-It is well known that the fringing capacitances de-
termined for rectangular bars between parallel plates interact with
each other when w/(b —t)+O. The limit of thk interaction as s~O for

fixed w, b, and t is determined for symmetrical odd-mode fringing

capacitances. This limit, together with an exact value known from

one rectangular section and the known asymptotic value as s+O,

permits one to estimate the values for alls. The same is true for the
interaction of the symmetrical even-mode fringing capacitances,

except that their interaction is readily shown to tend to zero as s+O.

If we denote by CO the total capacitance of a structure of unit
length whose cross section is shown in Fig. 1, then the exact odd-

mode fringing capacitance C,O, is defined by the equation CO= 4 C,O
+2 Cp where C is tbe parallel plate capacitance associated with the
side of the inner conductor whose length is WO. We have then

C= =2 W,/@, – To).
On the other hand, the “approximate” odd-mode fringing ca-

pacitance, CjO’,l is defined as half the limit of the difference between
the total capacitance and the parallel plate capacitance of the struc-
ture, shown in Fig. 2, as the magnetic wall recedes to infinity at the
right.

If we denote Cf~– C~Oby AcjO, then this short paper is concerned
in a general way with the evaluation of A CfO for given WiI~Bo, and

TO as a function of .S; and, in particular, with the value o~ACjO, the
‘ limit of AC,, as ,S~O. The special interest in the value of ACIO arises

from the fact that exact values of AC,, are already known for ,S = m

and at one intermediate point [2]. From an accurate estimate for
AC70, one may then determine the value of CjO. This quantity un-
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1 This is equivalent to the C~O~used by Getsinger [1], and it should also be noted

that the geometrical capacitances of this short paper must be multiplied by the per-
mlttivity to obtain the true capacitances.
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Fig. 1. Geometry defining Cf,.

Fig. 2. Geometry defining C~O’.

doubtedly is more accurate for general design purposes than Cf~,
since it is exact in the symmetrical case regardless of any interaction.

It is not difficult, following Bowman [3], to express the quantities
B, .S, and T of Fig. 2, except for a scale factor, in terms of two inde-
pendent real parameters, a and k, where k is the modulus of the

Jacobi elliptic functions involved. It is no restriction to assume that

OZk Z 1 and that O<rz<K. Then we have
——

B = 2K’
{

snadna

I
—–Z(a) –~+T

cn a

S=2K
{

snadna
— – Z(a)

cn a I

T = 2K’
{

snadna

I
—–Z(a) –~.

cn a

(1)

(2)

(3)

The approximate odd-mode fringing capacity, CjO’, for this

geometry is given in terms of the same parameters, a and k, by the

expression

{

snadna
rrcfo’ = 2(K – a) — — Z(a) ~ – 2 log (k sn ucn a)

cn a

– 4 log (On(a)). (4)

Here the functions are all those which are familiar from Jacobi’s

theory of elliptic functions, but it may be well to recall that On(a)
=@(a) /@(O).

It is clear from (2) that S+0 as a~O. If now T/B is to approach

the finite limit, To/Bo, as a+O, then T must approach a finite limit

>0 as a~O. This can only happen if K’+ M and, in turn, k~O.
We determine then the limit of CjJ as a and k+O; and, for this, we
will need the precise relationship of a and k in this limit.

To this end, we write down the expansions of the various elliptic
quantities occurring in (1), (2), and (3) in ascending powers of a

and k. Thus

(K=; l+:+ . . .
)

(
K/= 1 +;+...

)
log; –:+...

l+k2
sn(a, k)=a — _a3 +...

6

2 This formula is somewhat simpler than the one given by Getsinger [1], to which
it may be presumed to be equivalent on the basis of a comparison of numerical
results.
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cn(a, k)=l– ~+...

dn(a, k)=l–~u’ +...

z(a~)=(:+”””)++”””)~’+””o (5)

When these series are substituted in (1), (2), and (3) and the
limits found as a and k~O, one may neglect all but the first term in
the last four equations. Then, if the scale factor, (Bo —To) /rr, is in-

troduced to maintain the required spacing between the parallel
plates of Fig. 2, the values of B, .S, and T become

rrlr = 2(BO— To) ];+ (log; – 1 + O(k))a\ + O(aa) (6)

7r.s = @0— 2’o)7r(l + O(k))a + o(d) (7)

(7rT’ = 2(Bo – To) log; – 1 + O(k)) a + 0(a3) (8)

where O(x) denotes quantities such that O(x) /x is bounded as x-+0.
Similarly, in the vicinity of a and k = O,

Cf( = – ~ log (ak) + O(a) (9)

since log (1 +O(x)) =0(%).
Having fixed B’ – T’ =BO – TO by our choice of the scaling factor,

we can now determine how log k+ co as a~O by considering the con-

dition imposed by the requirement that T’= TO as a and k+O. Thus,
for small a and k,

To

‘:oog:-’)+o(k)+ o(a’) “0)(B, – T,)a r

We see that k vanishes exponentially with 1/a so that O(k) is
certainly O(a). Solving (10) for log (k) and substituting in (9) we find

q: = (BO ~TO)a – ~ (log (a) – 1 + log 4) + O(a). (11)

It is convenient to express this in terms of the plate spacing, g. From

(7) g= S’/2 = (1?,– TJa/2 +O(a’). Thus, for small g,

‘0w++%)‘]0’4- 11‘0(’) ’12)CI:=G–*

It should be observed that the term T/2g is just half of the capaci-
tance of a capacitor of width, To, plate spacing, g, and unit length.

Now it is also possible to determine the limiting value of the exact
odd-mode fringing capacitance, C~O, as S~O by considering the

problem from a different point of view. If we apply the formulas for

B, S, and T of Fig. 2 to the dimensions of Fig. 1 after it has been
rotated through 90°, then, denoting the approximate odd-mode

fringing capacitance by CfO’, it is readily se~n that Cto’ approaches

the exact odd-mode fringing capacitance, CJO as B+T, since the
interaction between the fringing capacities then approaches zero.

Now, using the fact that the total capacity of the structure must be

the same no matter how it is viewed, we have

W(I
Cfo+ — = Cfo+ :0

B,– T,
(13)

and so the limiting value of CfO can be found from the limiting value

of Cfo’.
TO find the limiting value of ~f{, we again turn to (l)-(4) but

now determine the relationship between a and k so that, after a suit-

able scale factor has been selected, while T’ = WO and S’ = B o— To,
B’~WO If we select WW’T as the scale factor and choose for k the

value, ko, for which

K’/K = W,/(Bo – T,) (14)

and permit a+K (ko), we readily find from (1 )– (3) that, while T’
=WO, S’ABO– T, and B’-WO, This path in the (a, k) plane defined

by (a+K, k,) which terminates in (K, ko) will be referred to as the

apqroxirnating path. Clearly, the ideal path in the (a, k) plane along
which B’+ WO while S’ = BO—TO must terminate in the same point
(K, k,) because of the continuity of the equations defining B’, S’,
and 2“’ in terms of a and k. Thus after showing that the limiting

value of ~fO’ does not depend on the part@ar path chosen,3 we shall
have found the correct limiting value of Cj~ when we have found its

limiting value on_the approximating path. Thus we may find the

limiting value of cf~ by evaluating (4) in the limit as a-+K after k
has been given the value ko.

To this end, it is convenient to write a =K –u and to consid,er the

behavior of the various functions involved as z.t+O. It is readily
found that

sna=sn(K–u)=~n~

cna=cn(K–u)=k’~n~

dna=dn(K–u)=~~

kzsnucnu
Za=Z(K–u)=– Zti+

dn u

r?na = o.(K – u) = dn u ~“~
Vk’

then, using (5) we have

snadna

(

2k2 _ 1
=: l+— ~z +...

cn a u 3 )

Snacna=k’u(’-(:-:k’)u’+”””)
za=G+”””)u-G+”’”)u3+”””

(15)

log (0.a) = – ~ log k’ + 0(u2) (16)

so that, for small u, independently of k,

B’=WO:=Wo+
war
~ u + O(Z’P)

S’=wo; =wo:, +o(u)

T’ = WO. (17)

We see that for k = ko, B’, S’, and T’ have the required behavior as
‘U+().

Substituting (16) in (4) we find, independently of k, for small

values of u,

&O’ = 2 — 2 log (kk’u) + 2 log k’ + o(u). (18)

Clearly, as u-+0, the limiting value of ~fO’ is independent of ths pre-
cise manner in which k-ko. Thus in (18) we may simply replace k

by ko and then allow u+O. Then also in (17) it is no restriction to

assume that -k = ko.
The decreasing quantity (B’ – T’) /2 was denoted earlier by g.

Thus for small u,

g=gu+o(g’) (19)

Then, solving for u in terms of g and substituting in (18), we have

\
~f:=~ l–logko– log

4K’g

1
~ + o(g). (20)

rr

Equation (13) is valid for all values of S and, in particular, when

S=2g. Thus from (12) and (13), for small g,

w,
AC/. = cfo’ – Cf, = – ~to+B~T;

{
– ~ log ++log4 – 11 +O(g). (21)

%-

Then adding and subtracting ~j~ to (21),

* Here the situation is different than that encountered in finding the limiting
value of CjO’. There,, k introduced a singularity into CfO’ at Its limltnw value and
we required the precise direction of approach to the limiting value.
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ACjO=~&/O+B& ~
Bo– TO

+! {log ~.
koK’

—+log=
1

+O(g). (22)

Accordingly, since ~f~ –~fO~O when g+O, as we have previously

seen, in the limit,

(23)

where k, K, and K’ are defined in (14).
A curve expressing the relationship between~CfO and Wo/@o - To)

is prqsented in Fig, 3. When Wo/(Bo —TiI)40, K+ co and k+l so

that ACfO becomes infinite logarithmically. @ the other hand, when
Wo/(B, – To)+ co, K’+ co and k+O so that AC$OhJ).

For any given value of Wo, BiI, and To, ACfO <ACfO so that values
taken from Fig. 3 put an absolute upper limit on the interaction be-

tween the symmetrical odd-mode fringing capacitances. Fig. 4 gives
two curves of ACfO versus .S to illustrate how the general curve can be
accurately deduced from information now at hand. The plotted points
on the curves between the points marked with circles and triangles
were obtained from the expression A Cf & Cf ~’— ~fO’ + Wo/(Bo —To)
– To/.SO, which follows from (13) when C~O’= ~f,. This approxima-
tion gives the rapidly changing portion of the curves with great ac-
curacy. When the approximate values were compared with the exact

values marked with circles (from [2 ]), where they are least accurate,
it was found that for T = 0.4 the error was of the order of 5 X 10–4 and

for T= 0.6 the error was less than 1 X 10-6. The values plotted at

.S = 2 were obtained from formulas given by Bates [4]. They are

actually values for .S = m. It is known however that the presence of

the side walls this far from the inner conductor will have a negligible
effect on CfO’ and CfO. Thus the effect on ACfO will be even less.
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Swept Frequency Impedance Indicator Using

Directional Couplers

SHUN ICHIRO EGAM I

Absfracf—A swept frequency impedance indicator which con-
sists of directional couplers and detectors is described. Experimental
equipment was made at a 17.5-19. 5-GHz band, and successfully
operated.

INTRODUCTION

Swept frequency impedance measurement is very useful in the

design and analysis of microwave devices. The method described

here is intended for swept frequency impedance measurement in

the millimeter waveband.

Several impedance-indicating methods applicable to the milli-

meter waveband are frequency dependent inherently [1 ], [2], or

magic T with relativel y narrow bandwidth were used [3]. The method

described here has no frequency dependence on its operation and the
swept frequency band is limited by the bandwidth of directional
couplers, detectors, and circulators, if used. Frequency of measure-
ment can be raised easily to the millimeter waveband because cou-
plers and detectors can operate equally at this band.

CIRCUIT FOR THE MEASUREMENT

The coupled output of a directional coupler has a 90° phase

difference with the uncoupled output. This phase shift depends on

the directivity of the coupler and is independent of the frequency.

This property is applied in this method. Fig. 1 shows the configura-

tion for swept frequency measurement. C3 is the power divider which

splits the input power with negligible frequency response. C4 is the

coupler which makes the 90° phase difference to get voltages propor-

tional to r cos C$and r sin@ (f, @: amplitude and phase of the reflection

coefficient of the device under test). In this configuration the length

of line C3–C6 and C3-L2-C5 must be the same. This is adjusted by

the phase shifter or line strecher L2. (This adjustment can be cor-
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Fig. 1. Circuit for swept frequency measurement.

rectly carried out by connecting a short-ended long line as a device
under test, and making the locus on the CRT circle.)

Then, changing the length of line L1, the measurement reference

plane can be changed as desired. If the magnitude of the conpling

of the couplers is designated as in Fig. 1, differences in the output

voltage are given as follows.

Va – V,= (W – ~){r’(1 – rz’)~’ – a’y’]

If kl = k, = 1/& and a, (3, -y are constant over the swept freqoency
band, voltage proportional to r cos @ and r sin @ can be obtained.

ERROR CONSIDERATION

Amplitude of the reflection coefficient on the CRT maybe affected

by:

1) nonuniform power level of the swept frequency input;

2) nonuniform frequency response of the detector;

3) nonuniform frequency response of the coupler.

The effect of 1) and 2) can be nullified by “leveling” of the sweep os-
cillator output using a 3-dB coupler (Cl) and detectors (Dl~-JD5)

with matched characteristics.
Since the 3-dB coupler has reverse frequency response at the

coupled and uncoupled output, the effect of 3) on C2, C5, and C6 can
be neglected, as understood by (1) and (2). Frequency response of
C3 can also be nullified using the configuration of Fig. 1. Eventually,
the effect of 3) can be restricted to C4. So, care must be taken to get
a flat frequency response at c4. (Change of radius is 1.2 percent/O.l

dB.) Position of the locus on the CRT is determined by the first
terms of (1) and (2). Deviation of kl and k~ from 1/~ makes the

small shift of the 10CUS by the frequency. SO, care must be tak,m to

make kl and k’ equal to l/@. In this method, correctness of the

phase measurement is determined by the phase error of the couplers.
This can be very small if the directivity of the couplers i:, suf-

ficiently high, and mismatch of the circuit is made small. Phase

error of the coupler at the matched condition is given by the follow-
ing equation.

where

$+ phase error from Ir/2 (radian);

k magnitude of coupling;

D directivity of the coupler.

If D = 35 dB, &# does not exceed 0.015°. But this maybe degraded by
mismatch of the circuit. Since the VSWR of the millimeter-waveband
detectors is high, it is necessary to lower this about 1.2 to get phase

error smaller than 1° [4].

RESULT OF EXPERIMENT

The configuration shown in Fig. 1 was constructed for the 18-

GHz band. Directivity of the coupler was over 3.5 dB in the 1.5-21 -
GHz band, A circulator, one port of which was connected by a mov-

able short, was used as the line stretcher L 1. L2 was a simple p,hase
shifter fixed at a suitable point. Reflection from the device under

test can be derived by a circulator or a coupler. In this case, a circu-


