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conclude that any frequency dependence is very small. Second, the
data show Ae¢ negative so the dielectric constant of the adhesive was
less than that of the substrate. It was known in this case that the
adhesive had a dielectric constant of 3.25 at low frequencies.

IV. ConcLusIONS

It has been shown that the wavelength in slot line is sensitive to
the dielectric constant and thickness of any adhesive present between
the substrate and the conducting surface. If the dielectric constant of
the adhesive is less than that of the substrate, wavelength increases
and this increase is in direct proportion to the ratio 7'/D.

While adhesive effect would normally be considered undesirable,
it is possible by use of the simple expressions developed here to cor-
rect experimental data for comparison with theory without having
detailed knowledge of the properties of the adhesive (Fig. 4).
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The Limiting Value of the Interaction Between
Symmetrical Fringing Capacitances

HENRY J. RIBLET

Abstract—It is well known that the fringing capacitances de-
termined for rectangular bars between parallel plates interact with
each other when w/(b—#)—0. The limit of this interaction as s—0 for
fixed w, b, and ¢ is determined for symmetrical odd-mode fringing
capacitances. This limit, together with an exact value known from
one rectangular section and the known asymptotic value as s—0,
permits one to estimate the values for all s. The same is true for the
interaction of the symmetrical even-mode fringing capacitances,
except that their interaction is readily shown to tend to zero as s—0.

If we denote by C, the total capacitance of a structure of unit
length whose cross section is shown in Fig. 1, then the exact odd-
mode fringing capacitance Cy,, is defined by the equation Coy=4Cy,
+-2C, where C is the parallel plate capacitance associated with the
side of the inner conductor whose length is W,. We have then
Cp =2Wo/(Bu— TO).

On the other hand, the “approximate” odd-mode fringing ca-
pacitance, C;,',! is defined as half the limit of the difference between
the total capacitance and the parallel plate capacitance of the struc-
ture, shown in Fig. 2, as the magnetic wall recedes to infinity at the
right.

If we denote Cy,'—Cy, by ACy,, then this short paper is concerned
in a general way with the evaluation of ACy, for given W, Bo, and
To as a function of S; and, in particular, with the value of AC;o, the
limit of ACy, as S—0. The special interest in the value of AC/ arises
from the fact that exact values of Ay, are already known for S = w
and at one intermediate point [2]. From an accurate estimate for
ACy,, one may then determine the value of Cr,. This quantity un-
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doubtedly is more accurate for general design purposes than Cy/,
since it is exact in the symmetrical case regardless of any interaction.

It is not difficult, following Bowman [3], to express the quantities
B, S, and T of Fig. 2, except for a scale factor, in terms of two inde-
pendent real parameters, ¢ and k, where % is the modulus of the
Jacobi elliptic functions involved. It is no restriction to assume that
0<E<1 and that 0<e<K. Then we have

B=2K'§M‘-‘—’—z(a)§*%"+w )
S =2K gw—zm)% @)
T=2K,§snadna Z()% 7;;1 3)

The approximate odd-mode fringing capacity, (', for this
geometry is given in terms of the same parameters, ¢ and &k, by the
expression?
snadne

7Cr' = 2(K — a) ? - Z(a)% — 2log (ksn acn a)

— 4log (6.(a)). (4)

Here the functions are all those which are familiar from Jacobi’s
theory of elliptic functions, but it may be well to recall that 6,(a)
=0(e)/0(0).

It is clear from (2) that S—0 as ¢—0. If now T/B is to approach
the finite limit, To/Bs, as ¢—0, then T must approach a finite limit
>0 as ¢—0. This can only happen if K’—« and, in turn, 2—0.
We determine then the limit of Cfy’ as @ and 2—0; and, for this, we
will need the precise relationship of ¢ and & in this limit.

To this end, we write down the expansions of the various elliptic
quantities occurring in (1), (2), and (3) in ascending powers of ¢
and k. Thus

na

=T(+E 4 )
= B Vel B
K-(1+4+ s -+
2
sn(a,k)=a—1-zk ad+ ...

2 This formula is somewhat simpler than the one given by Getsinger [1], to which
it mlay be presumed to be equivalent on the basis of a comparison of numerical
results.
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az
(B =1-—+

k2
dn(a,k)=1—7a2+---

k2 k?

o= (5)en &
(a, k) ;T a 3T
When these series are substituted in (1), (2), and (3) and the
limits found as ¢ and k—0, one may neglect all but the first term in
the last four equations. Then, if the scale factor, (Bo— 1)/, is in-

troduced to maintain the required spacing between the parallel
plates of Fig. 2, the values of B, S, and T become

4
(log; 1+ o<k>)a§ +0@)  (©
= (Bo — Tox(l + O())a + 0(a¥) @
4
T'=2(By— Ty (log; — 14 O(k)) a + 0(a® (©)]

DEETINNC

B’ = 2(Bo — To) 3§+

where O(x) denotes quantities such that O(x)/x is bounded as x—0.
Similarly, in the vicinity of ¢ and =0,

2
Cry = — ;108 (ak) + O(a) (O]

since log (14+0(x)) =0(x).

Having fixed B’ —T"=B,— T, by our choice of the scaling factor,
we can now determine how log £— « as a—0 by considering the con-
dition imposed by the requirement that 77 =T, as ¢ and k—0. Thus,
for small ¢ and %,

T

(By — To)e a0

2/ 4
-2 (log; - 1) +O() + 0.

We see that k vanishes exponentially with 1/¢ so that O(k) is
certainly O(e). Solving (10) for log (&) and substituting in (9) we find

T
e — 11
(Bo - To)(l ( )
It is convenient to express this in terms of the plate spacing, g. From
(1) g=S'/2=(Bo—To)a/2+0(a?). Thus, for small g,

! To
o =5 =2 s () e = | 0w

It should be observed that the term T'/2g is just half of the capaci-
tance of a capacitor of width, T, plate spacing, g, and unit length.

Now it is also possible to determine the limiting value of the exact
odd-mode fringing capacitance, Cy, as S—0 by considering the
problem from a different point of view. If we apply the formulas for
B, S, and T of Fig. 2 to the dimensions of Fig. 1 after it has been
rotated through 90°, then, denotmg the approximate odd-mode
fringing capacitance by Cy/, it is readlly seen that Cyy' approaches
the exact odd-mode fringing capacitance, C;, as B—T, since the
interaction between the fringing capacities then approaches zero.
Now, using the fact that the total capacity of the structure must be
the same no matter how it is viewed, we have

2
Cs) = - (log (@) — 1 + log 4) + O(a).

(12)

W — Ty
C — = — 13
7o T BT, 7o S, (13)
and so the limiting value of Cy, can be found from the limiting value
of C/

To find the limiting value of Ty, we again turn to (1)-(4) but
now determine the relationship between ¢ and k so that, after a suit-
able scale factor has been selected, while T/ =W, and S'=By— T,
B'—W,. If we select Wo/T as the scale factor and choose for k the

value, kg, for which
K'/JK = Wo/(By — To) 14

and permit ¢—K (ko), we readily find from (1)-(3) that, while 7"
=Wy, S’—Bo— T and B’—W,. This path in the (e, k) plane defined
by (e—K, ko) which terminates in (K, k) will be referred to as the
approximating path. Clearly, the ideal path in the (e, k) plane along
which B'— W, while S’ =By~ T, must terminate in the same point
(K, ko) because of the continuity of the equations defining B’, .5,
and T’ in terms of @ and k. Thus after showing that the limiting
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value of Cy,’ does not depend on the particular path chosen,® we shall
have found the correct limiting value of C;,/ when we have found its
limiting value on_the approximating path. Thus we may find the
limiting value of Cy,' by evaluating (4) in the limit as a—K after k
has been given the value k.

To this end, it is convenient to write ¢ =K —u and to consider the
behavior of the various functions involved as u—0. It is readily
found that

cn %
sna =sn (K —u) = ——
dn u
cne =cn (K — u) —k’ilji
dn »
k’
dne=dn (K —u) = —
dn
R2snucnu
Za=7Z(K —u) = — Zu + ————
dn %
[/
Ont =0, (K — u) = dn 2t —= 15)
V¥
then, using (5) we have
snedne 1 2k — 1
____=_<1+ u2+~-)
cna u \"
2 35
=k’ 1- ———kz) 2 "‘)
snacna u ( (3 6 u? 4+
k2
D D B
log (8.0) = — Elog E 4 O(u?) (16)
so that, for small #, independently of &,
B' =
W =" 2K’
, S
S = W()? = WOE,""O(M)
= W,. an

We see that for k =k, B’, .S’, and 7" have the required behavior as
u—0.

Substituting (16) in (4) we find, independently of %, for small
values of u,

xCs,! = 2 — 2 log (kk'w) -+ 2 log k' + O(w). 18)
Clearly, as #—0, the limiting value of Cy, is independent of the pre-
cise manner in which k—ke. Thus in (18) we may simply replace %
by ko and then allow u—0. Then also in (17) it is no restriction to
assume that & =kq.

The decreasing quantity (B’'—
Thus for small #,

T")/2 was denoted earlier by g.

Wom
4K’

u + O(gh). (19

g =
Then, solving for « in terms of g and substituting in (18), we have
'

2 4K
Gy == 31 — log ko — log g; + O(g).
W

(20)

Equation (13) is valid for all values of S and, in particular, when
S =2g. Thus from (12) and (13), for small g,

W,

ACs = Cp — Cpy= — Cfo+l§o—’_—.—T—o

i;log +log4— 1£ +0(). (21

Then adding and subtracting -Cjo, to (21),
3 Here the situation is different than that encountered in finding the limiting

value of Cy,’. There, k introduced a singularity into Cy, at its limiting value and
we required the precise direction of approach to the hmmng value.
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kK’

o We 2 By—T,

AC; =Ty —Cypt + gl +1 ~—-§ 0. (22
10=Cr =Gt gt o Tlog=5—¢ +0(). (22)
Accordingly, since .C‘jo,_-Cjo_)O when g—0, as we have previously

seen, in the limit,
- K 2 kK
ACqy = — +-log—
K =

2r 23)

where &, K, and K’ are defined in (14). -

A curve expressing the relationship betweenACy,and Wo/(Bo— To)
is presented in Fig. 3. When W,/(By—To)—0, K—» and k—1 so
that ACy, becomes infinite logarithmically. On the other hand, when
Wo/(By—To)— 0, K'— % and k—0 so that ACy,—0.

For any given value of Wy, Be, and T, ACy,<ACy, so that values
taken from Fig. 3 put an absolute upper limit on the interaction be-
tween the symmetrical odd-mode fringing capacitances. Fig. 4 gives
two curves of ACy, versus S to illustrate how the general curve can be
accurately deduced from information now at hand. The plotted points
on the curves between the points marked with circles and triangles
were obtained from the expression AC =~ Cr/—Cr/+Wo/(By—Ty)
—To/So, which follows from (13) when Cy,'~Cy,. This approxima-
tion gives the rapidly changing portion of the curves with great ac-
curacy. When the approximate values were compared with the exact
values marked with circles (from [2]), where they are least accurate,
it was found that for T'=0.4 the error was of the order of 5X10™*and
for T=0.6 the error was less than 1X1075. The values plotted at
S=2 were obtained from formulas given by Bates [4]. They are
actually values for .S = «. It is known however that the presence of
the side walls this far from the inner conductor will have a negligible
effect on Cy" and C;,. Thus the effect on ACy, will be even less.
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Swept Frequency Impedance Indicator Using
Directional Couplers

SHUNICHIRO EGAMI

Abstract—A swept frequency impedance indicator which con-
sists of directional couplers and detectors is described. Experimental
equipment was made at a 17.5-19.5-GHz band, and successfully
operated.

INTRODUCTION

Swept frequency impedance measurement is very useful in the
design and analysis of microwave devices. The method described
here is intended for swept frequency impedance measurement in
the millimeter waveband.

Several impedance-indicating methods applicable to the milli-
meter waveband are frequency dependent inherently [1], [2], or
magic T with relatively narrow bandwidth were used [3]. The method
described here has no frequency dependence on its operation and the
swept frequency band is limited by the bandwidth of directional
couplers, detectors, and circulators, if used. Frequency of measure-
ment can be raised easily to the millimeter waveband because cou-
plers and detectors can operate equally at this band.

CIRCUIT FOR THE MEASUREMENT

The coupled output of a directional coupler has a 90° phase
difference with the uncoupled output. This phase shift depends on
the directivity of the coupler and is independent of the frequency.
This property is applied in this method. Fig. 1 shows the configura-
tion for swept frequency measurement. C3 is the power divider which
splits the input power with negligible frequency response. C4 is the
coupler which makes the 90° phase difference to get voltages propor-
tional to 7 cos ¢ and 7 sin ¢ (7, ¢: amplitude and phase of the reflection
coefficient of the device under test). In this configuration the length
of line C3-C6 and C3-L2-C5 must be the same. This is adjusted by
the phase shifter or line strecher L2. (This adjustment can be cor-
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Fig. 1, Circuit for swept frequency measurement.

rectly carried out by connecting a short-ended long line as a device
under test, and making the locus on the CRT circle.)

Then, changing the length of line L1, the measurement reference
plane can be changed as desired. If the magnitude of the coupling
of the couplers is designated as in Fig. 1, differences in the output
voltage are given as foilows.

Vi—Va= (b — H{r*(1 — atf? — o2(1 — )}
+2av/1 — a® biv/T = k2-v/1 — 281 cos ¢ (1)
Vi=Vi= (k2 — H{r(l — o?)p? — a2y?}
+ 2av/1 = a2 kyv/T — bty -Bersing. (2)

If ki=k:=1/4/2 and «, B, v are constant over the swept frequency
band, voltage proportional to 7 cos ¢ and 7 sin ¢ can be obtained.

ERrRrROR CONSIDERATION
Amplitude of the reflection coefficient on the CRT may be affected
by:

1) nonuniform power level of the swept frequency input;
2) nonuniform frequency response of the detector;
3) nonuniform frequency response of the coupler.

The effect of 1) and 2) can be nullified by “leveling” of the sweep os-
cillator output using a 3-dB coupler (C1) and detectors (D1~~D5)
with matched characteristics.

Since the 3-dB coupler has reverse frequency response at the
coupled and uncoupled output, the effect of 3) on C2, C5, and C6 can
be neglected, as understood by (1) and (2). Frequency response of
C3 can also be nullified using the configuration of Fig. 1. Eventually,
the effect of 3) can be restricted to C4. So, care must be taken to get
a flat frequency response at C4. (Change of radius is 1.2 percent/0.1
dB.) Position of the locus on the CRT is determined by the first
terms of (1) and (2). Deviation of %y and k; from 1/+4/2 makes the
small shift of the locus by the frequency. So, care must be taken to
make ky and k; equal to 1/+4/2. In this method, correctness of the
phase measurement is determined by the phase error of the couplers.

This can be very small if the directivity of the couplers is suf-
ficiently high, and mismatch of the circuit is made small. Phase
error of the coupler at the matched condition is given by the follow-
ing equation.

1 1 1
ol <37% D

where

8¢ phase error from =/2 (radian);
k  magnitude of coupling;
D directivity of the coupler.

If D =35 dB, 8¢ does not exceed 0.015°. But this may be degraded by
mismatch of the circuit. Since the VSWR of the millimeter-waveband
detectors is high, it is necessary to lower this about 1.2 to get phase
error smaller than 1° [4].

RESULT OF EXPERIMENT

The configuration shown in Fig. 1 was constructed for the 18-
GHz band. Directivity of the coupler was over 35 dB in the 15-21-
GHz band. A circulator, one port of which was connected by a mov-
able short, was used as the line stretcher L1. L2 was a simple phase
shifter fixed at a suitable point. Reflection from the device under
test can be derived by a circulator or a coupler. In this case, a circu-



